

The importance of physics, engineering and technology in healthcare

Physiciens medicaux Amelioration des traitements, sauvant des vies

L'importance de la physique, l'ingenieur et la technologie pour la santé

Medical physicists working for radiotherapy
Les physiciens medicaux en radiothérapie

Fitting an electron beam applicator to a linear accelerator

Placement de l'applicateur des électrons pour l'accélérateur linéaire

Acceptance tests on a new linear accelerator

Vérification de la mise en service d'un nouveau accélérateur linéaire

Checking accelerator beam alignment

Vérification d'alignement du faisceau d'un accélérateur linéaire

Reference dosimetry measurements for treatment planning

Mesures des dose de référence qui entre dans la planification des traitements

Precision dosimetry at the French national

Dosimétrie de précision au laboratoire national français

Fitting an end-plate electron beam applicator to a linear accelerator for dose measurements in a water tank

Placement d'un plateau de l'applicateur des électrons pour l'accélérateur linéaire afin de mesurer les doses absorbées dans une cuve rempli d'eau

Setting up a water tank for reference dose measurements

Mise en place d'un cuve d'eau pour les mesures de dose de référence

Making reference dose measurements for radiotherapy

Mesurant les doses de référence pour la radiothérapie

Setting up a plastic « phantom » with a thimble chamber for reference dose measurements

Mise en place d'un bloc en plastique qui représente le corps humain avec une chambre en de pour les mesures de référence

Performing linear accelerator dosimetry

Faisant les mesures de doses dans le faisceau d'un accélérateur linéaire

Image-guided radiotherapy monitoring

Vérification de la radiothérapie guidéait par les images

Checking treatment machine alignment

Vérification d'alignement de l'accélérateur avec l'iso centre

Film dosimetry for treatment planning verification

Radiothérapie dosifilme pour la vérification du planification du traitement

Testing respiratory-gated treatment using a patient model

Utilisation d'une maquette du patient pour tester l'efficacité du traitement quand c'est lie avec la respiration

Measurements for the UK National IMRT Audit

Des mesures faites pour l'audit national (GB) dans le domaine de la radiothérapie par modulation d'intensité

Checking results and signing off linear accelerator QA in compliance with national QART requirements

Vérification des résultats d'assurance qualité pour l'accélérateur linéaire et signature en accord avec la procédure requise dans les audit nationaux QART

Linear accelerator acceptance testing

Mesures afin de vérifier la mise en service d'un accélérateur linéaire

Treatment planning audit; comparison of calculated and measured doses

Measurement of I-125 seeds for prostate brachytherapy

Precision measurements for brachytherapy dosimetry

Innovative radiosurgery

Final checks on the fabrication of a stereotactic radiosurgery beam alignment phantom

Linear accelerator first-line maintenance

Acceptance testing of a new linear accelerator

International traceability for radiotherapy dosimetry

Medical physicists working for diagnostic radiology

Optimization of an automatic x-ray exposure device

Image quality verification for an x-ray image intensifier

International traceability for mammography beam calibrations

Verifying x-ray image quality

Perfoming QA on dental radiology equipment

Quality assurance checks for diagnostic x-ray unit

Performing QA checks on an x-ray unit

Image quality checks for CT using a patientphantom

Performing CT QA with a special patient phantom

Medical physicists working for interventional radiology

Quality control for interventional radiology

Image quality assessment of a C-arm x-ray image intensifer

Calibrating primary reporting monitors to DICOM greyscale standard

Medical physicists working for nuclear medicine imaging

Measurements of gamma camera resolution

Patient in a dual-headed SPECT scanner

A combined PET-CT scanner

The clinical team

Covers off the PET-CT scanner

Cyclotron for producing PET radionuclides

Inside the cyclotron that produces the short-lived PET radionuclides

Preparing a radiopharmaceutical patient injection for nuclear medicine imaging

Setting up a patient for the gamma camera

Performing image quality tests on a gamma camera with CT attenuation correction

Radiochemical preparation for imaging radiopharmaceuticals

Analysing the PET and CT images

Quality assurance on a SPECT-CT scanner

Monitoring image quality on a SPECT-CT scanner

Quality assurance on a SPECT-CT scanner

Medical physicists working for nuclear medicine therapy (molecular therapy)

Checking for residual iodine activity prior to discharge

Analysing quantitative nuclear medicine images

Analysing quantitative nuclear medicine images

Medical physicists working for magnetic resonance imaging (MRI)

Innovation – first magnetic resonance imaging system

Innovation – first MR image, through the liver showing multiple metastatic deposits in purple

Setting up a volunteer with a new RF-coil for an MRI scan

pMRI

Checking that a fabricated MR phantom fits the coil

Testing specialist MR Coils

Medical physicists working for ultrasound diagnostic imaging and therapy

Setting up for MR guided high-intensity ultrasound with temperature measurement control

Medical physicists working for ultraviolet therapy

Dosimetry of a phototherapy UV cabin

Image courtesy of Dr Freeman (GSTT)

Assessment of a UV unit spectrum

Medical physicists working for laser applications

Innovative retinal imaging using a laser

Laser ophthalmoscope retinal image

Medical physicists working for clinical engineering

Innovative haemodialyser for treating very small babies

Innovation – mobility for a paraplegic child

Innovation – realistic protheses that really work

Light source output testing

Repairing an incubator and monitor

Demonstrating the Gait Laboratory analysis software

Apnoea monitor repair

Electronic engineers discussing a medical device design

Precision machining for a medical device

Medical physicists working for physiological measurements

Validation and calibration of digital pressure monitors

Electrical testing of monitoring equipment

Urgent repair needed for an ECG monitoring head

Vestibular function test

Assessing visual function

Mobile phone antenna monitoring for staff safety

Electromagnetic compatibility testing at component level

Medical physicists working for the safety of staff and patients

Assessment of a surgical light against the Control of Artificial Optical Radiation at Work 2010 regulations

Vérification de la lumière chirologienne émis contre la réglementation anglais Control of Artificial Optical Radiation at Work 2010

Checking radiation leakage from a radiotherapy vault

Radiation monitoring around a radiotherapy installation

Calibrating a radiation contamination monitor

Checking for radiation leakage from an accelerator head using x-ray films to identify where to make measurements

Searching for a lost radioactive source in compacted waste

Testing and calibrating a contamination monitor

Acknowledgements

The EFOMP expresses its grateful thanks all those individuals and institutions who have contributed to this presentation with photographs and permissions, particularly the following:

Department of Health, UK Government

IPEM, UK

Hospital Physicists' Association (HPA Unite), UK

Serviço de Física Médica, IPOCFG, E.P.E., Coimbra, Portugal

Sheffield Teaching Hospital, UK

University of Aberdeen, Scotland

Guy's and St Thomas NHS Foundation Trust (GSTT, London)

The Open University, UK

Queen's Centre for Oncology, Hull, UK

Nottingham University Hospitals NHS Trust

Beatson Oncology Centre Glasgow, Scotland

Churchill Hospital, Oxford, UK

Kent Oncology Centre, UK

St Bartholomew's NHS Hospital, UK

Maidstone and Tunbridge Wells NHS Trust